
VI
THE DISCRIMINATION-NET

Thus far, c-lists, i-lists, and processed-c-lists have been stored in simple lists
(*conclusions*, *interests*, and *processed-conclusions*).  Finding a c-list for a formula
involves traversing the list.  For large databases, this can be made considerably more
efficient by storing them instead in a discrimination-net.  A discrimination-net is a tree of
nodes (d-nodes).  Each d-node has a set of discrimination-tests associated with it.  To
classify an object in terms of the discrimination-net, we begin at the top node and apply
the tests sequentially until the object satisfies one of the tests.  Each test corresponds to a
branch descending from the d-node.  When an object satisfies a discrimination test, we
proceed down the associated branch to the next d-node.  This process is repeated until we
come to a d-node at which the object passes none of the discrimination tests.  This means
that the object cannot be further discriminated in terms of the net, so it is classified as
being of the type of that final d-node.  Typically, objects are stored at the nodes classifying
them.  Then when we want to find an object of a certain type (characterized by a list of
discrimination tests) we can simply walk down the tree to the appropriate d-node rather
than searching through a list of all the objects stored.

1.  Encoding Formulas

To build a discrimination-net storing formulas (or structures like c-lists and i-lists that
are categorized in terms of an associated formula), we need a way of encoding the formula.
The resulting formula-profile should be a list of ÒdescriptorsÓ.  A branch of the net will
correspond to a list of descriptors, and a formula will be stored at the node corresponding
to the last descriptor in the list.  D-nodes will be datastructures encoding the following
information:

¥ d-node number
¥ discrimination-tests
¥ d-node-c-lists
¥ d-node-i-lists
¥ parent-d-node
¥ d-node-forwards-reasons

*top-d-node* will be the node at the top of the discrimination-net.

What remains is to construct an encoding of formulas.  This is performed by FORMULA-
CODE.  FORMULA-CODE returns two valuesÑa list of descriptors, and a list of terms.  For
example:

(formula-code '(-> (r x5 x6) (-> (r x6 x7) (r x5 x7))))

returns the values

(((1) . ->) ((2 1) . r) ((3 1) . ->) ((3 2 1) . r) ((3 3 1) . r))
(x5 x7 x6 x7 x5 x6)

The first value is a list of descriptors, which describe the symbols that occur at specific
positions in the formula.  For instance, the presence of the descriptor Ò((3 2 1) . r)Ó signifies
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that the first member of the second member of the third member is ÒrÓ.  The description



thus produced describes the formula down to the argument-places of the atomic formulas,
but does not describe the terms.  The second value returned lists the terms.  They are
listed in order of their occurrence within each atomic subformula, but in reverse order of
the occurrence of the subformula in the formula.  The first main point of this encoding is
that formulas will be categorized first in terms of their main connective.  The other main
point of the encoding is that to check whether two formulas unify, we need merely check
that the first values of their formula-codes are the same, and their term-lists (the second-
values) unify.  Consequently, if this encoding is used to store formulas in a discrimination-
net, the formulas will unify iff they are stored at the same node of the net and their
term-lists unify.  To take advantage of this, when c-lists and i-lists are stored in the
discrimination-net, the term-lists produced by the formula-code of the c-list-formulas and
i-list-formulas will be stored in a slot of the c-list or i-list.  C-lists and i-lists are also given
new slots to record the d-node at which they are stored.

A further feature of FORMULA-CODE is that bound variables are rewritten in a standard
form, so that notational variants receive the same code.  For example,

(formula-code '(all x (some y (r x y))))

and

(formula-code '(all w (some z (r w z))))

produce the same code:

(((1) . all) ((2 1) . some) ((2 2 1) . r))
((q-var 1) (q-var 2))

2.  Storing Inference-Nodes and Interests

Storing an inference-node consists of first searching for a d-node encoding the node-
formula.  If such a d-node is found, then a search occurs for a c-list stored at that node
having that node-formula as the c-list-formula.  If no c-list is found, one is created and the
node is stored in it.  If no d-node is found, then d-nodes are added to the net to create a
d-node at which the node can be stored.  Storing an interest works similarly.  To illustrate,
here is an example of a discrimination-net (produced in solving problem 54) generated by
this code:

|--((1) . V) : #<d-node: 55>
| |--((2 1) . ~) : #<d-node: 56>
| |--((2 2 1) . R) : #<d-node: 57>
| |--((3 1) . ~) : #<d-node: 58>
| |--((3 2 1) . R) : #<d-node: 59>
| |       #<c-list for (~(R ^x0 x6) v ~(R x6 ^x0))>
|
| |--((2 1) . &) : #<d-node: 38>
| | |--((2 2 1) . R) : #<d-node: 39>
| | |--((2 3 1) . R) : #<d-node: 40>
| | |--((3 1) . R) : #<d-node: 41>
| | |       #<c-list for (((R x5 x6) & (R x6 x7)) -> (R x5 x7))>
| |
|--((1) . ->) : #<d-node: 24>
| |
| | |--((3 1) . ~) : #<d-node: 60>
| | | |--((3 2 1) . R) : #<d-node: 61>
| | | |       #<c-list for ((R ^x0 x6) -> ~(R x6 ^x0))>
| | |
| | |--((3 1) . ->) : #<d-node: 42>
| | | |--((3 2 1) . R) : #<d-node: 43>
| | | |--((3 3 1) . R) : #<d-node: 44>
| | | |       #<c-list for ((R x5 x6) -> ((R x6 x7) -> (R x5 x7)))>
| | |
| |--((2 1) . R) : #<d-node: 25>
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| |--((3 1) . R) : #<d-node: 26>



| |       #<c-list for ((R x6 x7) -> (R (@y2 x6) x7))>
| |       #<c-list for ((R (@y2 x5) x7) -> (R x5 x7))>
| |       #<c-list for ((R x3 x4) -> (R x4 x3))>
|
|--((1) . SOME) : #<d-node: 19>
| |--((2 1) . R) : #<d-node: 20>
| |       #<c-list for (some y)(R x1 y)>
|

--#<d-node: 1>
|
| |--((2 1) . &) : #<d-node: 52>
| | |--((2 2 1) . R) : #<d-node: 53>
| | |--((2 3 1) . R) : #<d-node: 54>
| | |       #<c-list for ~((R ^x0 x6) & (R x6 ^x0))>
| |
| | |--((2 2 1) . &) : #<d-node: 45>
| | | |--((2 2 2 1) . R) : #<d-node: 46>
| | | |--((2 2 3 1) . R) : #<d-node: 47>
| | | |--((2 3 1) . R) : #<d-node: 48>
| | | |       #<i-list for ~(((R x5 x6) & (R x6 x7)) -> (R x5 x7))>
| | |
| |--((2 1) . ->) : #<d-node: 27>
| | |
| | | |--((2 3 1) . ~) : #<d-node: 62>
| | | | |--((2 3 2 1) . R) : #<d-node: 63>
| | | | |       #<i-list for ~((R ^x0 x6) -> ~(R x6 ^x0))>
| | | |
| | | |--((2 3 1) . ->) : #<d-node: 49>
| | | | |--((2 3 2 1) . R) : #<d-node: 50>
| | | | |--((2 3 3 1) . R) : #<d-node: 51>
| | | | |       #<i-list for ~((R x5 x6) -> ((R x6 x7) -> (R x5 x7)))>
| | | |
| | |--((2 2 1) . R) : #<d-node: 28>
| | |--((2 3 1) . R) : #<d-node: 29>
| | |       #<i-list for ~((R x3 x4) -> (R x4 x3))>
| |
|--((1) . ~) : #<d-node: 17>
| |--((2 1) . R) : #<d-node: 18>
| |       #<c-list for ~(R ^x0 (@y2 ^x0))>
| |       #<c-list for ~(R (@y2 ^x0) ^x0)>
| |       #<c-list for ~(R ^x0 ^x0)>
| |       #<i-list for ~(R x1 (@y2 x1))>
|
|--((1) . R) : #<d-node: 16>
|       #<c-list for (R ^x0 ^x0)>
|       #<c-list for (R (@y2 x3) x3)>
|       #<c-list for (R x1 (@y2 x1))>
|       #<i-list for (R ^x0 ^x0)>
|
| |--((2 2 1) . &) : #<d-node: 34>
| | |--((2 2 2 1) . R) : #<d-node: 35>
| | |--((2 2 3 1) . R) : #<d-node: 36>
| | |--((2 3 1) . R) : #<d-node: 37>
| | |       #<c-list for (all z)(((R x5 x6) & (R x6 z)) -> (R x5 z))>
| |
| |--((2 1) . ->) : #<d-node: 21>
| | |--((2 2 1) . R) : #<d-node: 22>
| | |--((2 3 1) . R) : #<d-node: 23>
| | |       #<c-list for (all y)((R x3 y) -> (R y x3))>
| |
| |--((2 1) . R) : #<d-node: 15>
| |       #<i-list for (all x)(R x x)>
|--((1) . ALL) : #<d-node: 2>

|
| |--((2 2 1) . ALL) : #<d-node: 9>
| | |--((2 2 2 1) . ->) : #<d-node: 10>
| | |--((2 2 2 2 1) . &) : #<d-node: 11>
| | |--((2 2 2 2 2 1) . R) : #<d-node: 12>
| |        |--((2 2 2 2 3 1) . R) : #<d-node: 13>
| |             |--((2 2 2 3 1) . R) : #<d-node: 14>
| |             | #<c-list for (all x)(all y)(all z)(((R x y) & (R y z)) ->
| |  (R x z))>
| |
|--((2 1) . ALL) : #<d-node: 5>
| |
| | |--((2 2 2 1) . &) : #<d-node: 30>
| | | |--((2 2 2 2 1) . R) : #<d-node: 31>
| | | |--((2 2 2 3 1) . R) : #<d-node: 32>
| | | |--((2 2 3 1) . R) : #<d-node: 33>
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| | | |     #<c-list for (all y)(all z)(((R x5 y) & (R y z)) ->



| | |       (R x5 z))>
| | |
| |--((2 2 1) . ->) : #<d-node: 6>
| |--((2 2 2 1) . R) : #<d-node: 7>
| |--((2 2 3 1) . R) : #<d-node: 8>
| |       #<c-list for (all x)(all y)((R x y) -> (R y x))>
|
|--((2 1) . SOME) : #<d-node: 3>

|--((2 2 1) . R) : #<d-node: 4>
|       #<c-list for (all x)(some y)(R x y)>

The discrimination-net is displayed by executing DISPLAY-DISCRIMINATION-NET.  Just that
part of the net containing d-node number n can be displayed by executing (SHOW-D-NODEÊn).
(SHOW-NODE n) displays that part of the discrimination-net directly relevant to inference-node
number n, and (SHOW-INTEREST n) displays that part of the discrimination-net directly
relevant to interest number n.

When storing inference-nodes and interests, searches through the existing c-lists and
i-lists are made under several circumstances.  First, when a c-list is constructed, a search
is made for matching i-lists, and when an i-list is constructed, a search is made for
matching-c-lists (i.e., i-lists and c-lists whose formulas unify).  Previously, this had to be
done by searching *conclusions* and *interests*.  Now it can be done by just looking at
the c-lists and i-lists that are stored at the same d-node, and checking to see whether their
term-lists unify.  This is the way MATCHING-I-LISTS-FOR and MATCHING-C-LISTS-FOR work.
Interest-discharge is then performed in terms of matching-c-lists and matching-i-lists.
Second, when an c-list is constructed, a search is made for c-list-contradictors.  This is
done by finding matching-c-lists for the negation of the c-list-formula.  That in turn is
done by simply walking down the net to the right d-node, rather than searching through
a list of all the c-lists.  MAKE-NEW-REDUCTIO-SUPPOSITION, VALIDATING-DEDUCTIVE-NODE, and EI

call C-LIST-FOR, which searches for the c-list having a given formula as its c-list-formula.
That can now be done by simply walking down the net.

Thus far, the changes described concern c-lists, i-lists, and interest-discharge.  They do
not concern forwards-reasoning or the discharge of interest-schemes, which proceed in
terms of processed-c-lists.  On easy problems (problems producing small databases),
these changes have no significant effect, neither speeding OSCAR up nor slowing it
down.  But on hard problems, they have a dramatic effect. For instance, on the Schubert
steamroller problem, which involves an inference graph of 411 nodes, these changes
reduce the time required to find the proof by 38%.

3.  Storing Processed C-lists

When an inference-node is retrieved from the inference-queue for subsequent use in
forwards-reasoning and the construction of interest-schemes from mixed-backwards-
reasons, it is deemed ÒprocessedÓ.  Because only processed inference-nodes are used for
this reason, a separate database was previously kept for these nodes.  They were stored in
Òprocessed-c-listsÓ, which were in turn stored in the list *processed-conclusions*.  This
was to keep the search smaller than if it were performed on the list of all *conclusions*.
However, this in turn required processed-c-lists and c-lists to be distinct structures.  Because
the search for c-lists is now so much more efficient, we can  cease distinguishing between
c-lists and processed-c-lists, and within a single c-list keep two node-listsÑone for all
c-list-nodes, and one for the c-list-nodes that have been processed.

By storing processed inference-nodes in the discrimination-net, we can make some
inference-rules more efficient.  For instance, modus-ponens1 has been written to require a
search through *processed-conclusions*.  Given a new conditional, we search *processed-
conclusions* for a node whose formula unifies with the antecedent.  This can now be
rewritten to walk down the discrimination-net to the d-node-for the antecedent, check the
c-lists stored there to determine which contain processed-nodes, and check those c-lists to
determine whether their formulas unify with the antecedent of the conditional.  Furthermore,
the unification can be made more efficient by unifying the term-lists rather than the
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whole formulas.  modus-tollens1 and conditional-modus-tollens can be made more efficient



in the same way.
modus-ponens2 also involves a search of *processed-conclusions*.  Given an arbitrary

node, *processed-conclusions* is searched for conditionals whose antecedents unifyf with
the node-formula.  However, this search is harder to eliminate.  It can be made somewhat
more efficient by just searching under the d-node labeled Ò(1 . ->)Ó.  modus-tollens2 can be
changed similarly.  WIth these rules, the Schubert steamroller problem is now done in
53% of the time it took originally.

However, this change to modus-ponens2 still has us searching through all conditionals
rather than just those whose antecedents have the same form as the node-formula of c.
To accomplish the latter, we might try constructing the conditional (P -> X), where P is
the node-formula of c and X is a variable.  Then if we could find a d-node for (P -> X), we
could try just searching for c-lists stored at that d-node.  This does not quite work.  The
formula-code for (P -> X) is (((1) . ->) ((2) . p) ((3) . x)).  C-lists stored at the d-node for this
formlula would have to be conditionals whose consequents were ÒXÓ.  That is not our
intent.  We want them to be conditionals with arbitrary consequents.  That was the point
of making X a variable.  We can rectify this by encoding formulas with variables somewhat
differently.  PREMISE-CODE differs from FORMULA-CODE in that when variables are encountered,
no descriptor is added to the list of descriptors.  Thus (PREMISE-CODE Ô(-> P X) Ô(X))
returns (((1) . ->) ((2 1) . p)).  The conditionals whose antecedents might unify with P are
then those stored at nodes lying at or below the d-node for (((1) . ->) ((2 1) . p)) in the
discrimination-net.  Note that the unification must be done in terms of the formulas
rather than the term-lists because the c-list-term-list will contain terms occurring in the
consequent of the conditional stored at the c-list, but the term-list produced by PREMISE-
CODE will contain no corresponding terms.

There remains a difficulty.  Although this works for modus-ponens2, the same strategy
will not work for modus-tollens2.  The difficulty is that the profile returned by (PREMISE-
CODE Ô(-> x p) Ô(x)) is (((1) . ->) ((3) . p)).  If we try to walk this description through the
net, we will not find a d-node for it.  This is because d-nodes correspond to complete
formulas.  Every complete conditional has an antecedent, and so will have an entry of the
form ((2)Ê.Ê...) preceding ((3) . p).   (PURSUE-D-NODE-FOR profile *top-d-node*) takes the
descriptors one at a time, and so after finding a node labeled ((1) . ->), it will look for a
daughter node labeled ((3) . p) and will not find one.  All the daughter nodes will have
labels of the form ((2) . ...).

This difficulty arises from the fact that Ô(-> x p)Õ is a partially instantiated premise.
That is, the second premise of modus-tollens2 is Ô(-> x y)Õ where x and y are premise-variables.
Given ~p, the reasoner looks for inference-nodes of the form (-> x p).  To find such nodes,
it must examine all conditionals, regardless of antecedent, and see whether any of them
have p as a consequent.  To perform this search within the discrimination-net, when there
is a gap in the profile of the partially instantiated premise (e.g., no descriptor beginning
with Ô(2)Õ), it must move down all daughter nodes until it comes to nodes whose descriptors
begin with a position-code that is represented in the premise-code.  If the descriptor with
that position-code disagrees with the corresponding descriptor in the premise-code, further
search of that branch of the net can be terminated.  If the descriptors agree, the search can
continue down that branch until either a disagreement is encountered or the descriptions
are exhausted.  In the latter case, a d-node has been found whose c-lists are candidates for
unification with the partially instantiated premise.

This change reduces the time spent on the Schubert Steamroller Problem by an additional
7%, for an overall reduction to 48% of the original time.

4.  Arbitrary Forwards-Reasons

The next task is to construct machinery to treat arbitrary forwards-reasons in the same
way modus-ponens2 and modus-tollens are treated above.  This involves two procedures.
First, when a node is newly retrieved from the inference-queue, we must find all forwards-
reasons having a premise that is instantiated by the node-formula.  An efficient way to do
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this is to store the premises themselves in the discrimination-net at the most specific



d-node for the premise-code for the premise.  For this purpose we add a slot to reasons
for reason-d-nodes.  For example:

? (setf simp1
         (make-forwards-reason
           :reason-name "simp"
           :reason-conclusions ‘(P Q)
           :forwards-premises (list (list '(& P Q) #'is-inference))
           :reason-variables '(P Q)
           ))

? (setf *forwards-reasons* (list simp))

? (initialize-discrimination-net)

? (display-discrimination-net)

--#<d-node: 1>
|--((1) . &) : #<d-node: 2>
|       premise: (& p q) for simp

Then when a new node is retrieved from the inference-queue, we go to the d-node at
which its c-list is stored, and search upwards for d-nodes having reason-premises stored at
them.

For reasons with reason-functions, like modus-ponens1, the search for nodes instantiating
premises after the first premise is carried out by the reason-function, so only the first
premise should be listed as a forwards-premise for the reason.

Storing the reasons in the discrimination-net will result in a large acceleration of the
reasoning when the reasoner is given a large database of reasons.  But even on the purely
deductive problems using the small array of reasons contained in the list *forwards-
logical-reasons*, the harder problems are accelerated by around 5%.  This brings the
Schubert Steamroller Problem down to 45% of its original time.

When reasoning forwards from an inference-node, the node is used to instantiate the
first premise.  If there are no more premises, that instantiation will be used to compute
the conclusion to be drawn.  If there are more premises, the instantiation is used to
partially instantiate the next premise.  The premise-code for that partially-instantiated
premise is computed, and the discrimination-net is searched for nodes instantiating it.
This is repeated until all nodes are found instantiating all the premises, and then the
cumulative instantiation is used to compute the conclusion to be drawn.

5.  A Better Strategy for
Forwards-ReasoningÑInstantiated Premises

The previous strategy has us do two searches.  When a conditional is retrieved from
the inference-queue, we search for processed-conclusions that unify with the antecedent;
and when any formula is retrieved from the inference-queue, we search for processed
conditionals whose antecedents unify with the new formula.  The latter search is performed
by searching all conditionals.  A more efficient strategy is the following.  (1) When a
conditional is retrieved from the inference-queue, we find the d-node for its antecedent,
and search for processed-conclusions the unify with it.  This is as before.  Note that such
conclusions must be stored at the very same d-node.  (2) We store the antecedent at that
d-node.  We can do this by adding a slot d-node-instantiated-premises to d-nodes.  (3) When
any formula is retrieved from the inference-queue, rather than search for conditionals, we
just search for conditional-antecedents stored at the d-node-instantiated-premises of that
same d-node for unifying antecedents.  This latter search should be more efficient than
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searching through all the conditionals stored in the discrimination-net.



An instantiated-premise will be a data-structure encoding the following information:
¥ ip-reason
¥ ip-bindingÑthe binding of the reason-variables produced thus far
¥ ip-basisÑthe list of inference-nodes that have instantiated the previous premises
¥ ip-premiseÑthe first remaining premise

For reasons that will become evident later, we use the same structures for storing forwards-
reasons and instantiated-premises.

To illustrate this scheme, when a conditional is retrieved from the inference-queue,
APPLY-FORWARDS-REASONS searches upwards from its d-node looking for d-nodes storing
applicable forwards-reasons.  When the search reaches *conditional-node*, modus-ponens1
is encountered (stored in d-node-forwards-reasons), and modus-ponens1 is applied to the
conditional.

As modus-ponens2 imposes no syntactic constraints on formulas to which it applies, it
will be stored in the discrimination-net at *top-d-node*.  As such, it will not be executed
until APPLY-FORWARDS-REASONS searches the discrimination-net all the way up to *top-d-
node*.  It could be applied immediately rather than after performing this search, but that
would not actually increase efficiency.  This is because the search must take place anyway
in the process of looking for other applicable inference-rules.  The only effect this will
have is to postpone the application of modus-ponens2 until after other forwards-inference-
rules are applied.  Nevertheless, to facillitate future generalizations, let us revise the code
to apply modus-ponens2 immediately.  The key to doing this is to note that modus-ponens2
is not really a separate inference-ruleÑit is just the last half of modus-ponens2.  So let us
delete it from the list of forward-reasons.  This will have the effect of no longer storing it
at top-d-node*.  Let us call modus-ponens2 a continutation-function rather than a reason-
function.

To get modus-ponens2 applied, we revise REASON-FROM-PREMISE-NODE so that it looks
not just at d-node-forwards-reasons but also at d-node-instantiated-premises.  We can
treat modus-tollens analogously.  These changes result in an acceleration of up to 7% on
the test problems (6% on the Schubert Steamroller Problem, and at least 5% on a large
number of the other problems).

Next, observe that we need not distinguish between d-node-forwards-reasons and
d-node-instantiated-premises.  We have used the same structures for recording both, and
we can store them both in the same slot in d-nodes.

Storing a forwards-reason at a d-node really amounts to storing its first-premise.  We
can regard this as the limiting case of storing an instantiated-premise (with an empty
instantiation and empty basis).  This suggests regarding modus-ponens1 and modus-tollens1
as reason-continuations as well.  We can treat other forwards-reasons analogously.  This
has the effect of eliminating all appeal to reason-functions.  Alternatively, we can scrap
reason-continuations and simply give reason-functions the extra argument ÒipÓ.

The significance of this last exercise is that it points the way to a general strategy for
dealing with arbitrary forwards-reasons.  The first step in the generalization is to add
some slots to instantiated-premises:

¥ ip-condition
¥ ip-remaining-premises
¥ ip-instantiationsÑthe list of instantiations of node-variables in the ip-basis.
¥ ip-used-premise-variablesÑthe premise variables bound thus far.
¥ derived-premisesÑinstantiated-premises produced by instantiating the present

instantiated-premise.
¥ ip-d-nodeÑthe d-node at which the instantiated-premise is stored.

Just as for modus-ponens2, COMPUTE-FORWARDS-REASON-D-NODES will now store only the
first forwards-premise of a reason in d-node-forwards-reasons.  This means that modus-
ponens1 and modus-tollens1 must be written so that the conditional is the first premise (in
fact, they are already written that way).  We need not list the other premises, as no use
will be made of them (the reason-functions access them implicitly).
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Forwards-reasoning will now proceed as follows.  First, each forwards-reason will be



indexed in the discrimination-net according to its first premise.  This will be accomplished
by COMPUTE-FORWARDS-REASON-D-NODES.  When a new conclusion is processed, we search
at and above its d-node for forwards-reasons whose first premises are instantiated by the
conclusion (also for instantiated-premisesÑsee below).  This search is performed by REASON-
FROM-DOMINANT-PREMISE-NODES, which applies REASON-FROM-FIRST-INSTANTIATED-PREMISE to
the d-node of the conclusion and all d-nodes above it in the discrimination-net.  REASON-
FROM-FIRST-INSTANTIATED-PREMISE looks at each instantiated-premise of a d-node.  If the
ip-reason has a reason-function, that is applied as in modus-ponens1 and modus-ponens2.  If
the ip-reason has no reason-function and the instantiated-premise has an empty ip-basis,
REASON-SUBSTANTIVELY-FROM-FIRST-INSTANTIATED-PREMISE is applied.  (If the ip-basis is
nonempty, REASON-SUBSTANTIVELY-FROM-NON-INITIAL-INSTANTIATED-PREMISE is applied, as
described below.

REASON-SUBSTANTIVELY-FROM-FIRST-INSTANTIATED-PREMISE first checks to see whether the
processed conclusion instantiates the instantiated-premise.  This check is carried out by
first pattern-matching the node-formula to the premise-formula, using the premise-
variables as the pattern variables.  If a premise-variable occurs more than once in the
premise-formula, it may correspond to more than one term in the node-formula.  This
correspondence is recorded in a term-list, which is an a-list of dotted pairs (var . terms)
where var is a premise-variable and terms is the list of terms in the node-formula
corresponding to occurrences of var in the premise-formula.  For the node to instantiate
the premise, what is required is that there be a unifier u that unifies all members of terms
for each (var . terms) in the term-list.  u will be the instantiation for the node-formula.
Applying u to the term-list produces a binding of the premise-variables, consisting of an
a-list of dotted-pairs (var . term) where term is the result of unifying all members of terms
(in (varÊ.Êterms)) using u.  With each premise we will store a two-valued function (called a
binding-function) that produces the binding and the instantiation when applied to an
arbitrary node-formula and node-variables.  Thus the instantiation check is carried out by
applying the premise binding-function to the node-formula and node-variables.  If the
instantiation u is non-nil, the node instantiates the premise.

If the node instantiates the premise and there are no more premises, then an inference
is made in accordance with the (monadic) forwards-reason.  If there are more premises,
then the binding is applied to the second premise (producing a partially instantiated
premise) and an instantiated-premise is constructed for it and stored in the discrimination-
net.  The ip-binding is the binding and the list of ip-instantiations is the list whose only
member is u.  The ip-basis is the unit set of the node.  A search is carried out over the
d-nodes at and below which the instantiated-premise is stored for processed-c-lists whose
c-list-nodes instantiate the new instantiated-premise.  The search proceeds by applying
REASON-SUBSTANTIVELY-FROM-NON-INITIAL-INSTANTIATED-PREMISE to the instantiated-premise
and each processed-c-list.

REASON-SUBSTANTIVELY-FROM-NON-INITIAL-INSTANTIATED-PREMISE proceeds by first checking
to see whether the c-list-nodes instantiate the premise.  It does this by first applying the
premise binding-function to the c-list-formula to produce a binding (binding0) and an
instantiation (instantiation0).  If instantiation0 is non-nil, then it checks to see whether
binding0 and instantiation0 are consistent with the ip-binding and ip-instantiation.  It
does this by looking for a unifier u that simultaneously unifies the terms the two bindings
assign to common premise-variables.  Given a non-nil u, it is applied to binding0 and the
ip-binding to produce a new binding binding.  Where instantions0 is the list of instantiations
for the prior premises, let instantiations1 be the result of sequentially merging u2 with
these instantiations, and let instantiation be the instantiation that results from sequentially
merging u1 with instantiation0.  Let instantiations be the result of consing instantiation to
the front of instantiations1.  If there are no more premises, then an inference is made in
accordance with the forwards-reason.  If there are more premises, then binding is applied
to the next premise and an instantiated-premise is constructed for it and stored in the
discrimination-net.  The ip-binding is binding and the ip-instantiations is instantiations.
The ip-basis is the result of adding the processed-c-list to the front of the previous ip-basis.
A search is carried out over the d-nodes at and below which the instantiated-premise is
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stored for processed-c-lists whose c-list-nodes instantiate the new instantiated-premise.



The search proceeds by applying REASON-SUBSTANTIVELY-FROM-NON-INITIAL-INSTANTIATED-
PREMISE to the instantiated-premise and each processed-c-list.

As noted above, when a new processed conclusion is retrieved from the inference-queue,
REASON-FROM-INSTANTIATED-PREMISES also applies REASON-SUBSTANTIVELY-FROM-NON-INITIAL-
INSTANTIATED-PREMISE when an instantiated-premise with a non-empty ip-basis is found at
or above the new node in the discrimination-net.  In that case, if REASON-SUBSTANTIVELY-
FROM-NON-INITIAL-INSTANTIATED-PREMISE produces a new instantiated-premise, the new
processed-conclusion is inserted into the ip-basis rather than the processed-c-list for for
the conclusion.  In this way, ip-bases come to be lists containing both individual inference-
nodes and processed-c-lists.  When an inference is made (upon instantiating all the reason-
premises), it is made from every basis (list of inference-nodes) that can be constructed
from the ip-basis.

All parts of the discrimination-net containing nodes directly relevant to a forwards-
reason can be displayed by executing (SHOW-REASON reason).

6.  Backwards-Reasoning

The discrimination-net can be used to make backwards-reasoning more efficient in
much the same way it is used for forwards-reasoning.  First, backwards-reasons can be
stored in the discrimination-net according to their conclusions, and then when an interest
is adopted, applicable backwards-reasons can be found by searching at or above the
interest in the discrimination-net.

For simple-backwards-reasons (those wth no forwards-premises), REASON-
SUBSTANTIVELY-FROM-BACKWARDS-REASON simply finds the binding of the premise-variables
provided by instantiating the reason-consequent by the interest-formula, and then builds
an interest-link to interest in the backwards-premises as instantiated by the binding.  In
simple cases, the binding results from pattern-matching the interest-formula and the
reason-consequent, but if a premise-variable has multiple occurrences in the reason-
conclusion, then constructing the binding requires unifying the terms corresponding to
the different occurrences.  This process is the same as that encountered in forwards-
reasoning.  To make this efficient, it will be convenient to store a binding-function and a
list of the premise-variables occurring in the reason-consequent in the backwards-reason:

Simple backwards-reasons have no forwards-premises, and as such require no special
treatment in connection with the discrimination-net.  However, mixed and degenerate
backwards-reasons have forwards-premises that are instantiated by processed-conclusions.
When a new interest of the appropriate form is adopted, it is used to partially instantiate
the premises of the reason, creating a new interest-scheme that is added to *interest-
schemes*.  The previous code then required a search of *processed-conclusions* to find
any that instantiate the forwards-premises of the interest-scheme.  In addition, whenever
a conclusion is retrieved from the inference-queue, a search was made of *interest-schemes*
to find any the conclusion instantiates.  Both of these searches can be done more efficiently
using the discrimination-net.  This is accomplished by storing the partially instantiated
forwards-premises at d-nodes in essentially the same way the forwards-premises for
forwards-reasons are stored.  When a new interest-scheme is adopted, and its forwards-
premises are stored in the discrimination-net, the search for conclusions instantiating the
premises can be restricted to d-nodes at or below the d-nodes at which the premises are
stored, and when a new conclusion is retrieved from the inference-queue, the search for
interest-schemes it might instantiate can proceed by searching at or above it in the
discrimination-net for those forwards-premises of interest-schemes.  Discharging the
interest-scheme works like REASON-FROM-PREMISE-NODE.

To implement this, we add a slot to d-nodes for d-node-interest-schemes.  CONSTRUCT-
INTEREST-SCHEME will work like STORE-FORWARDS-REASON, instantiating the forwards-reasons
by applying the binding already obtained by matching the reason-consequent with the
interest-formula.  Interest-schemes will be just like instantiated-premises, except that they
have an additional slot for target-interest and for instance-function, where the latter is a
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function that, when applied to an interest-formula of the appropriate logical form, produces



the instantiation of the premise-variables that produces the interest-formula from the
(first) reason-conclusion.

¥ is-reason
¥ is-bindingÑthe binding of the reason-variables produced thus far.
¥ is-basisÑthe list of inference-nodes that have instantiated the previous premises.
¥ is-premiseÑthe first remaining premise.
¥ is-condition
¥ is-remaining-premises
¥ is-instantiationsÑthe list of instantiations of node-variables in the is-basis.
¥ is-used-premise-variablesÑthe premise variables bound thus far.
¥ derived-premisesÑinstantiated-premises produced by instantiating the present

instantiated-premise.
¥ is-d-nodeÑthe d-node at which the instantiated-premise is stored.
¥ is-target-interest
¥ is-instance-function

When an interest-scheme is stored at a d-node, discharge-interest-scheme will search
at or below the d-node for processed-conclusions that instantiate the first premise.  REASON-
FROM-INTEREST-SCHEME will be analogous to REASON-SUBSTANTIVELY-FROM-NON-INITIAL-
PREMISE.  DISCHARGE-INTEREST-SCHEMES is called when an inference-node is retrieved from
the inference-queue.  This can now be made analogous to APPLY-FORWARDS-REASONS.

7.  Cancellation

When inference-nodes and interests are cancelled, this can result in the emptying of
i-list-interests for i-lists and c-list-nodes for c-lists.  When this happens, they should be
removed from their d-nodes.  If this leaves the d-nodes without c-lists or i-lists, and they
have no discrimination-tests, d-node-forwards-reasons, d-node-backwards-reasons, or d-
node-interest-schemes, then they become pointless and in the interest of efficiency they
should be removed from the discrimination-net.

When an interest is cancelled, this should cancel interest-schemes for which it is the
target-interest.  To implement this, a record must be kept in interests of the generated-
interest-schemes.  Then when an interest is cancelled, all generated-interest-schemses will
be cancelled, together with all interest-schemes derived from them.

Similarly, when an inference-node is cancelled, if this leaves its c-list without any
processed-nodes, this should cancel instantiated-premises and interest-schemes in whose
basis the node or c-list occurs.  To implement this, c-lists must have slots for generated-
instantiated-premises and supported-interest-schemes.  Then when a c-list is left without any
processed-nodes, all supported-interest-schemes will be cancelled, together with all
derived-interest-schemes, and all generated-instantiated-premises will be cancelled,
together with all derived-premises.

8.  An Example

We have added a number of slots to d-nodes.  The full structure of the discrimination-net
can now be illustrated by returning to the example given earlier of problem 54:

|--((1) . R) : #<d-node: 37>
|       #<c-list for (R x5 x5)>
|       #<c-list for (R (@y2 x6) (@y2 x6))>
|       #<c-list for (R (@y2 (@y2 x7)) x7)>
|       #<c-list for (R (@y2 x3) x3)>
|       #<c-list for (R x1 (@y2 x1))>
|       instantiated-premise 31 for modus-ponens2: (R (#:|@y2| #:\x5) #:\x7)
|       instantiated-premise 29 for modus-ponens2: (R #:\x6 #:\x7)
|       instantiated-premise 27 for modus-ponens2: (R #:\x5 #:\x6)
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|       instantiated-premise 23 for modus-ponens2: (R #:\x3 #:\x4)



|--((1) . some) : #<d-node: 21>
|       first premise for EI: (some X)P
|       conclusion for EG
| |--((2 1) . R) : #<d-node: 38>
| |       #<c-list for (some y)(R x1 y)>
|
| |--((2 2 1) . &) : #<d-node: 51>
| | |--((2 2 2 1) . R) : #<d-node: 52>
| | |--((2 2 3 1) . R) : #<d-node: 53>
| | |--((2 3 1) . R) : #<d-node: 54>
| | |       #<c-list for (all z)(((R x5 x6) & (R x6 z)) -> (R x5 z))>
| |
| |--((2 1) . ->) : #<d-node: 40>
| | |--((2 2 1) . R) : #<d-node: 41>
| | |--((2 3 1) . R) : #<d-node: 42>
| | |       #<c-list for (all y)((R x3 y) -> (R y x3))>
| |
| |--((2 1) . R) : #<d-node: 36>
| |       #<c-list for (all x)(R x x)>
|--((1) . all) : #<d-node: 20>
|       first premise for UI: (all X)P
|       conclusion for UG
| |
| | |--((2 2 1) . all) : #<d-node: 30>
| | | |--((2 2 2 1) . ->) : #<d-node: 31>
| | | |--((2 2 2 2 1) . &) : #<d-node: 32>
| | | |--((2 2 2 2 2 1) . R) : #<d-node: 33>
| | | |--((2 2 2 2 3 1) . R) : #<d-node: 34>
| | | |--((2 2 2 3 1) . R) : #<d-node: 35>
| | | |       #<c-list for (all x)(all y)(all z)(((R x y)
| | |  & (R y z)) -> (R x z))>
| | |
| |--((2 1) . all) : #<d-node: 26>
| | |
| | | |--((2 2 2 1) . &) : #<d-node: 47>
| | | | |--((2 2 2 2 1) . R) : #<d-node: 48>
| | | | |--((2 2 2 3 1) . R) : #<d-node: 49>
| | | | |--((2 2 3 1) . R) : #<d-node: 50>
| | | | |       #<c-list for (all y)(all z)(((R x5 y) & (R y z)) ->
| | | |  (R x5 z))>
| | | |
| | |--((2 2 1) . ->) : #<d-node: 27>
| | |--((2 2 2 1) . R) : #<d-node: 28>
| | |--((2 2 3 1) . R) : #<d-node: 29>
| | |       #<c-list for (all x)(all y)((R x y) -> (R y x))>
| |
| |--((2 1) . some) : #<d-node: 24>
| |--((2 2 1) . R) : #<d-node: 25>
| |       #<c-list for (all x)(some y)(R x y)>
|
|--((1) . &) : #<d-node: 17>
|       first premise for simp: (P & Q)
|       conclusion for adjunction
| |--((2 1) . R) : #<d-node: 61>
| |--((3 1) . R) : #<d-node: 62>
| |       instantiated-premise 25 for modus-ponens2: ((R #:\x5 #:\x6) & (R #:\x6 #:\x7))
|

--#<d-node: 1>
|
| |--((2 1) . R) : #<d-node: 39>
| |       instantiated-premise 30 for modus-tollens2: ~(R (#:|@y2| #:\x6) #:\x7)
| |       instantiated-premise 26 for modus-tollens2: ~(R #:\x5 #:\x7)
| |       instantiated-premise 24 for modus-tollens2: ~(R #:\x4 #:\x3)
| |--((2 1) . all) : #<d-node: 23>
| |       first premise for neg-ug: ~(all X)P
| |       conclusion for i-neg-ug
| |--((2 1) . some) : #<d-node: 22>
| |       first premise for neg-eg: ~(some X)P
| |       conclusion for i-neg-eg
| |--((2 1) . ~) : #<d-node: 16>
| |       first premise for neg-elim: P
| |       conclusion for neg-intro
|--((1) . ~) : #<d-node: 11>
| |--((2 1) . V) : #<d-node: 15>
| |       first premise for neg-disj: ~(P v Q)
| |       conclusion for i-neg-disj
| |--((2 1) . ->) : #<d-node: 14>
| |       first premise for neg-condit: ~(P -> Q)
| |       conclusion for i-neg-condit

VI - 11

| | |--((2 2 1) . R) : #<d-node: 45>



| | |--((2 3 1) . R) : #<d-node: 46>
| | |       instantiated-premise 28 for modus-tollens2: ~((R #:\x6 #:\x7) ->
| |  (R #:\x5 #:\x7))
| |
| |--((2 1) . <->) : #<d-node: 13>
| |       first premise for neg-bicondit-simp: ~(P <-> Q)
| |       conclusion for i-neg-bicondit
| |--((2 1) . &) : #<d-node: 12>
| |       first premise for DM: ~(P & Q)
| |       conclusion for i-DM
|
|--((1) . <->) : #<d-node: 10>
|       first premise for bicondit-simp: (P <-> Q)
|       conclusion for bicondit-intro
|--((1) . V) : #<d-node: 6>
|       first premise for disj-simp: (P v Q)
|       conclusion for disj-cond-2
|       conclusion for disj-cond
|
| |--((3 1) . ->) : #<d-node: 58>
| | |--((3 2 1) . R) : #<d-node: 59>
| | |--((3 3 1) . R) : #<d-node: 60>
| | |       #<c-list for ((R x5 x6) -> ((R x6 x7) -> (R x5 x7)))>
| |
| |--((2 1) . R) : #<d-node: 43>
| | |--((3 1) . R) : #<d-node: 44>
| | |       #<c-list for ((R x6 x7) -> (R (@y2 x6) x7))>
| | |       #<c-list for ((R (@y2 x5) x7) -> (R x5 x7))>
| | |       #<c-list for ((R x3 x4) -> (R x4 x3))>
| |
| |--((2 1) . some) : #<d-node: 19>
| |       first premise for E-removal: ((some X)P -> Q)
| |--((2 1) . all) : #<d-node: 18>
| |       first premise for A-removal: ((all X)P -> Q)
| |--((2 1) . &) : #<d-node: 9>
| |       first premise for exportation: ((P & Q) -> R)
| | |--((2 2 1) . R) : #<d-node: 55>
| | |--((2 3 1) . R) : #<d-node: 56>
| | |--((3 1) . R) : #<d-node: 57>
| | |       #<c-list for (((R x5 x6) & (R x6 x7)) -> (R x5 x7))>
| |
|--((1) . ->) : #<d-node: 2>
|       first premise for modus-ponens1: (%p -> %q)
|       first premise for modus-tollens1: (%p -> %q)
|       first premise for conditional-modus-tollens: (P -> Q)
|       first premise for cond-simp1: (P -> ~P)
|       conclusion for conditionalization
| |--((2 1) . V) : #<d-node: 8>
| |       first premise for disj-antecedent-simp: ((P v Q) -> R)
| |--((2 1) . ->) : #<d-node: 7>
| |       first premise for cond-antecedent-simp: ((P -> Q) -> R)
| |--((2 1) . ~) : #<d-node: 5>
| |       first premise for cond-simp2: (~P -> P)
|
|--((1) . @) : #<d-node: 3>

|--((2 1) . &) : #<d-node: 4>
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